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Abstract. Molecular dynamics simulations are used to investigate the diffusion processes in the
liquid metal alloys NacK1−c at three different concentrations. Self-correlation and distinct velocity
correlation functions together with the corresponding diffusion coefficients have been calculated
and analysed in order to study the phase-separation phenomenon. It is found that Na3K7 and Na5K5
compositions display significant dynamic cross correlations indicating a demixing behaviour for
these alloys, whereas Na8K2 alloy is a nearly ideal mixture. The results obtained agree well with
the experimental observation of a tendency towards phase separation exhibited by liquid Na–K
alloys.

1. Introduction

During the last few years, remarkable progress has been made in the theoretical description of
the diffusion processes in binary liquids [1–6]. The main quantities of interest are self- and
mutual diffusion coefficients. The two self-diffusion coefficientsDi (i = 1, 2) are related to
the motion of a tagged, isolated particle of speciesi through a uniform medium, whereas the
mutual (or interdiffusion) coefficientDm describes the collective transport of mass driven by
gradients in chemical potentials. Molecular dynamics simulation plays an essential role in
the study of diffusion properties of liquids, since it allows the motion of each particle to be
‘observed’ on atomic scales of length and time [7]. The self- and mutual diffusion coefficients
may be calculated as the Green–Kubo integrals of the self- and distinct velocity correlation
functions (VCFs) or from the corresponding mean square displacements, directly accessible
in MD simulations. The dynamical cross correlation ratio defined asδD = Dm/D

0
m, where

D0
m is the mutual diffusion coefficient of an ideal mixture, is well suited to the study of the

phase-separation or inverse phenomena in binary liquids. For valuesδD > 1, phase-separation
trends are displayed by the mixture, whileδD < 1 indicates an associative behaviour [1].

However, the recent theoretical study of the diffusion processes in binary liquids has mainly
been focused on molten salts and various modifications of Lennard-Jones systems [1–5,9,10].
The aim of this paper is to analyse the VCFs and related diffusion coefficients in liquid metal
alloys Na–K at different concentrations. Recently, the static structure of liquid Na–K alloys,
interacting via effective pair potentials derived from the neutral-pseudoatom method, has been
studied by means of the integral-equation theory [8]. The calculated static structure factors
predict a phase-separating character for this alloy, in good agreement with experimental data.
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In the present calculations we use the same pair potentials for MD simulations of sodium–
potassium alloys at three different concentrations: Na3K7, Na5K5 and Na8K2, and analyse the
dynamic cross correlations in these alloys with respect to the phase-separation phenomenon.

2. Basic theory

2.1. Self- and distinct diffusion coefficients

The dynamic functions in which we are mainly interested are: two velocity autocorrelation
functions of each species:

Zi(t) = 1

3Ni

∑
j

〈Evij (t) · Evij (0)〉 (1)

and the time correlation function (TCF) of the velocity of the centre of mass of the first
component:

Zcm(t) = N

3
〈Eu1(t) · Eu1(0)〉 Eu1(t) = 1

N1

∑
Ev1
j (t). (2)

Here,Evij (t) is the velocity of thej th particle of speciesi at timet ,Ni is the number of particles
of speciesi andN = N1+N2 is the total number of particles. The angular brackets〈· · ·〉 denote
the time average. The diffusion coefficients (DCs) are given by the Green–Kubo integrals of
the corresponding VCFs:

Di =
∫ ∞

0
Zi(t) dt (3)

and

Dm = (c1c2)
2

Scc(0)

(
1 +

m1c1

m2c2

)2 ∫ ∞
0
Zcm(t) dt (4)

whereci, mi represent the concentration and mass of particles of theith component, andScc(0)
is the long-wavelength limit of the Bhatia–Thornton concentration–concentration structure
factor.

The mutual (or distinct) diffusion coefficient is related to its self-counterparts via [4]

Dm = c1c2

Scc(0)

(
c1D2 + c2D1 + c1c2

∫ ∞
0

[
3d

11(t) +3d
22(t)− 23d

12(t)
]

dt

)
(5)

where3d
ij (t) are distinct or cross velocity correlation functions:

3d
ij (t) =

1

3
N〈Evik(t) · Evjl (0)〉 (k 6= l if i = j). (6)

In the ideal mixture, the dynamic cross correlations are absent and

D0
m =

c1c2

Scc(0)
(c2D1 + c1D2). (7)

It is well known that the distinct velocity correlation functions and relatedDm, unlike the
self-diffusion properties, depend on a reference system. Raineri and Friedman showed [6]
that the constant-energy (NVE) MD ensemble is equivalent to the fixed-mass or barycentric
reference frame (RF). Hence, using relationships between VCFs that hold in this RF, we can
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express the3 functions in terms of the introducedZ-functions as follows:

3d
11(t) = Zcm(t)−

Z1(t)

c1

3d
22(t) =

(
c1m1

c2m2

)2

Zcm(t)− Z2(t)

c2
(8)

3d
12(t) = −

c1m1

c2m2
Zcm(t)

with the initial values

Zi(0) = kBT

mi
Zcm(0) = kBT

m̄

m2c2

m1c1
(9)

3d
11(0) = 3d

22(0) = 3d
12(0) = −

kBT

m̄
(10)

wherem̄ is the mean mass:̄m = c1m1 + c2m2.
The sum function3s(t) = 3d

11(t) + 3d
22(t) − 23d

12(t) characterizes dynamical cross
correlations in binary liquids. The time integral over the sum functionI s = ∫

3s(t) dt
is zero for a dynamically ideal mixture andI s > 0 for mixtures with a tendency towards
phase separation. Quantitatively, the system’s deviation from ideality is measured by the cross
correlation ratioδD.

The Green–Kubo formulae for the DCs are evaluated by integrating the corresponding
correlation functions over the time interval from zero to infinity. In practice, however, the
upper limit of integration is rarely greater than a few picoseconds. Alternatively, diffusion
coefficients may be calculated from the corresponding mean square displacement (MSD)

〈r2(t)〉i = 〈[Eri(t)− Eri(0)]2〉 (11)

〈R2(t)〉1 = 〈[ ER1(t)− ER1(0)]
2〉 (12)

using the Einstein relations [13]

Di = 1

6
lim
t→∞
〈r2(t)〉i
t

(13)

and

Dm = N

6

(c1c2)
2

Scc(0)

(
1 +

m1c1

m2c2

)2

lim
t→∞
〈R2(t)〉1

t
(14)

whereEri(t) is the position of an arbitrary particle of speciesi and ER1(t) is the position of the
centre of mass of component 1 at timet .

The third method suitable for the evaluation of DCs is through the incoherent

F si (q, t) =
1

Ni

Ni∑
j

〈exp [−i Eq · (Erij (t)− Erij (0))]〉 (15)

and concentration–concentration

Fcc(q, t) = N〈cq(t)c−q(0)〉 (16)

intermediate-scattering functions, where

cq(t) = 1

N

(
c2

N1∑
j

exp(−i Eq · Er1
j (t))− c1

N2∑
j

exp(−i Eq · Er2
j (0))

)
. (17)

The hydrodynamic form ofF si (q, t) is related to the self-diffusion coefficientDi [13] by

F si (q, t) = exp(−Diq
2t). (18)
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The second function,Fcc(q, t), is connected with the mutual diffusion constant in the hydro-
dynamic limit by

Fcc(q, t) = (Scc(q)/A)
[(
Dm − DT +D − A

2

)
exp

{
− q

2

2
t [(DT +D) +A]

}
−
(
Dm − DT +D +A

2

)
exp

{
− q

2

2
t [(DT +D)− A]

}]
(19)

whereA =
√
(DT +D)2 − 4DTDm,DT is the thermal diffusion coefficient,D = Dm(1 +α)

andα is a combination of some thermodynamic quantities that we are not actually interested
in. Note that because as many as three fitting parameters are involved in this formula, the
results obtained are not very precise and must be regarded with a good deal of scepticism.
Nevertheless expression (19) can serve as an indirect check ofScc(0) since it givesDm itself
whereas equations (14) and (4) give only the productScc(0)Dm. The fitting procedures were
carried out over the time ranget > tc wheretc indicates the beginning of the linear time
dependency of the mean square displacement.

It should also be noted that equations (18) and (19) assume that the wavevectorq is
small enough for probing the hydrodynamic limit. If this is not so, we can only speak of
theq-dependent generalizedDi(q) andDm(q). Finally, we would like to list all TCFs that
were directly calculated during the MD runs:〈r2(t)〉i , 〈R2(t)〉1, Zi(t), Zcm(t), F si (q, t) and
Fcc(q, t).

2.2. Calculation ofScc(0)

If we are interested in the absolute value of the mutual diffusion coefficientDm, an evaluation
of Scc(0) is inevitable. Unfortunately, the fixed number of particles in MD simulations [11]
produces a significant error in the estimation of the structure factor in the low-q region.
Therefore, we have applied a finite-size correction procedure to the pair distribution functions
(PDFs) obtained in MD simulations [14]. Our approach is based on the Taylor-series expansion
of the pair distribution function for the infinite systemgij (r) about an average number of
particles to order 1/N :

gij (r) = gNij (r) +
∑
αβ=1,2

√
NαNβSαβ(0)

2NiNj

∂

∂ρα

∂

∂ρβ

[
ρiρjgij (r)

]
(20)

wheregNij (r) is the PDF for anN -particle system, obtained in a MD simulation,ρi is the
number density of particles of theith sort andSij (0) is the Ashcroft–Langreth static structure
factor. In this expression we replace thegij (r) under derivation in the right-hand side with the
PDFs calculated by means of the integral-equation technique in the modified hypernetted-chain
(MHNC) approximation with bridge functions derived in theMori–Hoshino–Watabe(MHW)
scheme [12]. This method contains no adjustable parameters and is thought to generate PDFs
in good agreement with MD data for liquid metal alloys.

The finite-size correction procedure is arranged into a sequence of steps. In the first step
we use theSij (0) predicted by the MHNC theory to make the correction to the MD PDFsgNij (r)

via expression (20). This may be done only in the limited separation ranger < L/2, whereL
is the length of the simulation box. To evaluate PDFs beyond that range, we used a procedure
proposed by Galam and Hansen [15] which consists in solving the Ornstein–Zernike (O–Z)
equation with the following closure:

cij (r) =
{
gij (r)− 1− γij (r) if r < Rcij
−βUc

ij (r) if r > Rcij .
(21)
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Here,cij (r) is the direct correlation function,γij (r) = gij (r)−1− cij (r) andUc
ij (r) is the cut

effective potential used in the simulation. The cut-off radiusRcij should be chosen from the
third to the fourth potential minimum for the best result [16]. Now, the PDFs obtained over
the full range ofr may be safely Fourier transformed to determine new values ofSij (0) and
to return to the correction step. This loop is repeated until self-consistency between the initial
and finalSij (0) is achieved. In practice it takes no more than four or five iterations.

Up to this point we have constructed the structure functions for a system interacting not
via actual potentialsUij (r) but via the cut potentials used in the MD simulation. To determine
Sij (0) for the system with full potentials, we must exploit the fact that the bridge functions
Bij (r) are less sensitive to the long-range tail of the pair potentials than the PDFs are and that
theBij (r) are equal for the two systems [16]. Now, we can derive the bridge functions from
the convergedgij (r) via

Bij (r) = γij (r)− log(γij (r))− βUc
ij (r) (22)

and substitute them into a closure

cij (r) = exp(−βUij (r) + γij (r)− Bij (r))− 1− γij (r) (23)

and then solve the O–Z equation complemented with it to evaluate the final PDFs and static
structure factors.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

S
cc

(0
)

c, Na

Figure 1. The Bhatia–Thornton structure factorScc(0) versus concentration. Solid circles: present
results; open circles: experimental data given by van der Lugt; full curve: experimental data given
by Hultgrenet al; dotted curve: the ideal-mixture resultScc(0) = c1c2.

A system is called thermodynamically ideal whenScc(0) = c1c2. If a mixture is preferred
to the phase separation,Scc(0) > c1c2, and vice versa for an associating mixture. In a real
separating system,Scc(0) tends to infinity. Starting from 500- and 2048-particle molecular
dynamics ensembles, we managed to calculateScc(0) differing from each other by no more
than 10% for Na3–K7 alloy. For the remaining two systems, we expect accuracy that is at least
as good. In figure 1 we present the results obtained forScc(0) as a function of concentration
in comparison with the experimental data derived by Hultgrenet al [17] from the activity
experiments and by Alblas and van der Lugt [18] from the x-ray scattering. In general, there
is good agreement between theoretical and experimental data, which show a weak tendency
towards phase separation for liquid Na–K alloys.
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Figure 2. Effective pair potentialsUij (r)/kT for Na–K alloys: from here on, (a) corresponds to
Na3K7 alloy, (b) to Na5K5 and (c) to Na8K2. Full curves: K–K; dot–dashed curves: Na–K; dashed
curves: Na–Na. The averaged valueεav12 = 1

2(ε11 + ε22) is shown by light dotted lines.

3. Results

3.1. Molecular dynamics simulations

We have studied the diffusion properties for three liquid Na–K alloys at a temperature
T = 373 K: Na3K7 (ρ = 0.014 87 Å−3), Na5K5 (ρ = 0.016 83 Å−3) and Na8K2

(ρ = 0.020 68 Å−3). We used the effective interatomic potentialsUij (r) obtained by Gonzalez
et alwithin the neutral-pseudoatom method [8]. Figure 2 shows the interatomic pair potentials
for the systems under investigation. It is observed that each of the three sets of potentials is
symmetrical with respect to the position of the main minimum of the interaction between unlike
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particles,U12(r); thus the cross correlations are primarily governed by the relative magnitude
of the interaction strengthδε12 = ε12/ε

av
12, whereεav12 = 1

2(ε11 + ε22) andεij is the magnitude
of the main minimum ofUij (r). The first minimum ofU12(r) for Na3K7 alloy lies over the
averaged valueεav12 andδε = 0.93, which leads to strengthening of the cross correlations and
a tendency towards demixing for this composition. As the concentration of Na atoms in the
alloy increases, the depth of the first minimum ofU12(r) tends to the averaged value and for
Na8K2 alloy δε = 1.01, which leads us to predict a nearly ideal dynamic behaviour for this
system.

The simulations have been performed using a micro-canonical ensemble consisting of
500 particles with the usual periodic boundary conditions. The velocity Verlet algorithm was
adopted [7] as the best one for such calculations. The time step of about 5× 10−15 s was
sufficient to conserve the total energy of the system to better than 0.01% even for the longest
run.

Some remarks are in order concerning the accuracy of the results obtained. Firstly,
computation of the one-particle properties (namely〈r2(t)〉1,Zi(t) andF si (q, t)) is not critical:
400 000 time steps were enough for calculatingZi(t) with the accuracy of 1%. Collective
properties require much longer runs and, for example, to reach the accuracy of 3% forZcm(t)

as many as 1200 000 time steps were necessary. The second remark is connected with the
accuracy of the calculated diffusion coefficients. As mentioned above, we calculated DCs in
three different ways. Once the range of linearity of the mean square displacements has been
established, it is sufficient to calculate the diffusion coefficients. The Green–Kubo relations,
however, require accurate values of the correlation functions over the whole integration time
interval. That is why the DCs obtained from the MSD are accurate to up to 1–3% and 4–5%
compared with 3–4% and 6–7% of the accuracy from the Green–Kubo relations. We did not
estimate the errors forF si (q, t) andFcc(q, t) because they are used in a fitting procedure that
produces additional errors. Therefore, the diffusion coefficients from those fits are usually the
least precise ones and are mainly used for qualitative comparisons. Finally, we would like to
note that we obtain not the mutual diffusion coefficient itself from the Green–Kubo relation or
mean square displacement but the productDmScc(0), and it is this quantity that is determined
with the above-mentioned accuracy. The mutual diffusion coefficient itself is calculated with
15–20% uncertainty due to the additional error in derivingScc(0).

3.2. Dynamic cross correlations

The distinct correlation functions3d
ij (t) are moderately interesting in their own right, while

the sum function3s(t) characterizes the dynamic cross correlations in the system and its
time integralIs directly contributes to the mutual diffusivity. In figure 3 we present3d

ij (t)

along with the sum function3s(t) for the three alloys examined in this study. The sum
function for all concentrations has oscillatory character with a decreasing importance of
the net cross correlations with increasing concentration of the Na component. For Na3K7

alloy, 3s(t) has a large maximum near 0.13 ps resulting from a reduced (compared to the
pseudomixture case) momentum exchange between particles of unlike species and leading to
a value larger than unity of the dynamic cross correlation ratioδD. For Na5K5 alloy, the cross
correlation contributions become less pronounced, and eventually almost disappear for Na8K2

alloy, indicating hence a nearly ideal behaviour for this composition. This result agrees well
with the earlier findings concerning the magnitude of the first minimum ofU12(r) and from
the concentration–concentration structure factorScc(0) for these alloys.

Figure 4 shows the spectrum of the normalized velocity correlation functionsZi(ω) and
Zcm(ω) in comparison with the functionc1Z2(ω) + c2Z1(ω), which characterizes the ideal
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Figure 3. The normalized distinct velocity TCFs3dij (t): full curves: K–K; dashed curves: Na–Na;
dotted curves: Na–K; symbols: the sum function3s(t).

mixture. These spectra were smoothed by convoluting them with a Gaussian resolution
function chosen so as to preserve the zeroth frequency moment. The positions of the maxima
of Zi(ω) are related to the frequency of oscillations of Na and K atoms in their ‘cages’ formed
by the nearest neighbours, while that ofZcm(ω) may be interpreted as the main frequency
of the oscillations of the components as a whole. It is observed that the oscillations of the
light Na atoms give a contribution to the dynamic non-ideality at high frequencies, while the
heavier atoms of K do so at lower frequencies. The most relevant dynamic cross correlations
occur, however, in the low-ω region ofZcm(ω). The diffusion coefficients were calculated
from these spectra atω = 0 rather than by direct integration of VCFs, since the statistical
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Figure 4. Power spectra of the normalized velocity correlation functions: full curves:Zs(ω)

for K particles; dashed curves:Zs(ω) for Na particles; dotted curves: ideal-mixture results
c2Z

s
1(ω) + c1Z

s
2(ω); open circles: centre-of-massZcm(ω).

noise that they contain was substantially reduced by the smoothing procedure. The results
for the diffusion coefficients obtained in the three ways described for the alloys studied
are compiled in table 1. The self-diffusion coefficientsDi obtained from the fitting of the
corresponding incoherent intermediate-scattering functionF si (q, t)are in good agreement with
the mean square displacement and Green–Kubo results. The mutual diffusion coefficientsDm

derived from the fitting ofFcc(q, t) are in somewhat poorer agreement due to greater statistical
uncertainties ofFcc(q, t) and the procedure of fitting.

In figure 5 we present the DCs obtained from the fitting ofF si (q, t)andFcc(q, t)at different
wavevectors, which may be regarded as theq-dependent generalized diffusion coefficients. It



1406 A Baumketner and Ya Chushak

Table 1. Self- and mutual diffusion coefficients (in Å2 ps−1) for Na–K alloy.

Na3K7 Na5K5 Na8K2

D1 D2 Dm D1 D2 Dm D1 D2 Dm

Green–Kubo 0.58 0.62 0.37 0.56 0.62 0.49 0.49 0.58 0.53
MSD 0.57 0.62 0.36 0.55 0.62 0.49 0.47 0.57 0.54
Fita 0.59 0.65 0.39 0.56 0.63 0.44 0.48 0.58 0.47

a The smallest wavevector isq = 0.19 Å−1 for Na3K7; q = 0.20 Å−1 for Na5K5 andq = 0.22 Å−1

for Na8K2 alloy.

0 1 2

0.3

0.4

0.5

0.6

(c)

q, A-1

0.3

0.4

0.5

0.6 (a)

0.4

0.5

0.6 (b)

Figure 5. Generalizedq-dependent diffusion coefficients for Na–K alloys. Squares: the self-
diffusion coefficientD2(q) for the Na component; circles: the self-diffusion coefficientD1(q) for
K; diamonds: the mutual diffusion coefficientDm(q).
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is found that the self-diffusion coefficientsDi(q) smoothly decrease withq for all three alloys.
Such a decreasing behaviour is brought about by deviation of the van Hove self-distribution
functionGs(Er, t) from the Gaussian form, namely by the positive difference between space
moments of those functions. This fact may be proven in the kinetic theory approach for dilute
gases [19] and has been established for liquids with negligible coupling between self- and
collective motions [20].

Calculation of the mutual diffusion constantDm(q) requires much greater computational
effort than that of its self-diffusion counterpart; therefore we did not evaluateDm(q) at all
wavevectors compatible with the size of the MD box. But even for those values ofq for which
the calculations were performed, the error inDm(q) is so large that we failed to resolve any
fine structure withq.

0.0 0.2 0.4 0.6 0.8 1.0

0.8

1.2

1.6

2.0

2.4

c, Na

Figure 6. Cross correlations in Na–K alloy as a function of concentration. Symbols: solid circles:
dynamic cross correlationsDm/D0

m; diamonds: static cross correlations(g11+g22)/2g12; triangles:
‘thermodynamic’ cross correlationsScc(0)/c1c2.

The dynamic cross correlation ratioδD = Dm/D
0
m for Na–K alloys as a function of

composition is presented in figure 6. As mentioned,δD for all systems studied is larger than
unity, thus revealing the tendency towards segregation exhibited by the alloy. For comparison,
we also depicted the static cross correlations defined as [1](g11 + g22)/2g12 wheregij is the
magnitude of the first maximum of the corresponding pair correlation functiongij (r). The static
and dynamic cross correlations show very similar weak concentration dependence. In contrast,
the ‘thermodynamic’ ratio ofScc(0) to its ideal value,Scc(0)/c1c2, depends rather strongly
on the alloy composition. However, all criteria—the static, dynamic and thermodynamic—
indicate the ideal-mixture behaviour for Na8K2 alloy and predict a tendency towards phase
separation for Na5K5 and Na3K7 compositions.

4. Conclusions

We have presented a molecular dynamics simulation study of the diffusion processes in
liquid metal alloys Na–K exhibiting a tendency towards phase separation. The self- and
mutual diffusion coefficients were calculated in three different ways: by using the Einstein
relation derived from the mean square displacements, by using the Green–Kubo relation for
the velocity correlation functions and by fitting the incoherent or concentration–concentration
intermediate-scattering functions. We also calculated the distinct velocity correlation function
which characterizes the dynamic cross correlations in the system. A special effort has been
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made to obtain the correct value ofScc(0). To this end, we applied the finite-size correction to
the pair distribution functions obtained in MD simulations and extended them into the large-r

region by means of the integral-equation technique.
The analysis of the dynamic cross correlations in the liquid Na–K system clearly showed

the existence of a tendency towards phase separation for Na3K7 and Na5K5 alloys, while Na8K2

alloy exhibits a nearly ideal behaviour. This result agrees well with the experimental findings
for the long-wavelength limit of the concentration–concentration structure factorScc(0) for
these alloys.

Acknowledgments

This work was supported by the National Ukrainian Academy of Sciences and by the
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